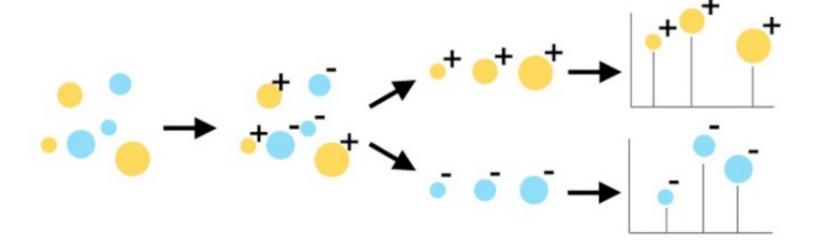


Particle Physics I

Lecture 3: Particle detection

Prof. Radoslav Marchevski September 18th 2024


Today's learning targets

- Main physics principles used for particle detection
- Bethe-Bloch formula describing ionisation losses
- Measurement of momentum and energy of the particles
- Combining different particle detection methods in modern particle physics experiments
- Examples of operating experiments

Particle detection

- Typical particle size: $\leq 10^{-15}$ m (proton radius)
- Wavelength reached by an electron microscope: $\lambda \sim 10^{-10} \text{ m}$
- Visualizing the particles by eye is impossible: need an indirect detection mechanism with devoted instruments
- Many different types of particle detectors depending on the information we want to obtain:
 - e.g. measurement of particle trajectory: scintillators, bubble or cloud chambers, wire chambers, semi-conductors, etc.
- All of them rely on the detection of a perturbation induced in matter by a passing particle
- In most cases, the perturbation is either an ionisation (electrical signal) or excitation (scintillation light) of atoms
 - electromagnetic interaction between the passing particle and the atomic electrons (works only for charged particles and photons)
- All detectors have a sensitive volume in which the perturbations occur:
 - gas (e.g. Ar, CO_2)
 - liquid (e.g. water, C_3H_8)
 - solid (e.g. Si, emulsion, ice)

Ionisation

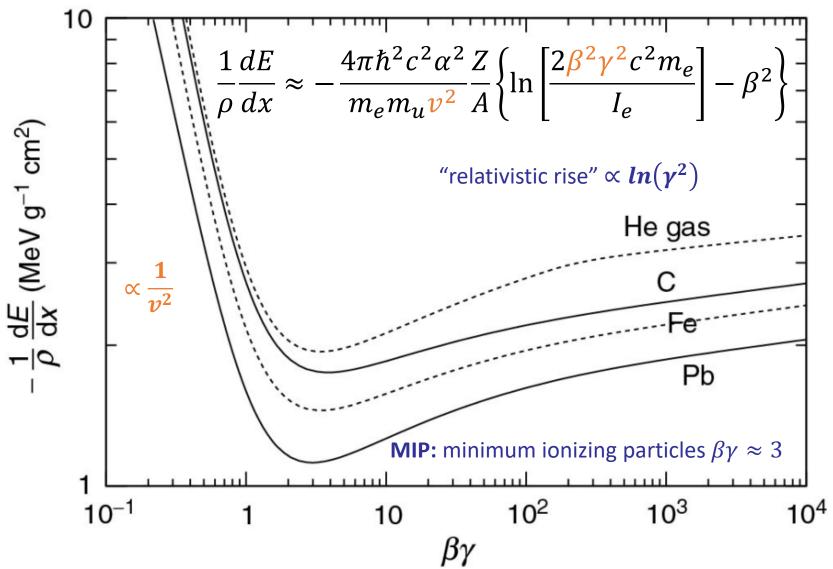
- A track of positive and negative ions is formed by a charged particle that kicks out an electron from the atom
- The energy loss per unit length traversed by the particle due to ionisation is given by the Bethe-Bloch formula:

$$\frac{dE}{dx} \approx -4\pi\hbar^2 c^2 \alpha^2 \frac{nZ}{m_e v^2} \left\{ \ln \left[\frac{2\beta^2 \gamma^2 c^2 m_e}{I_e} \right] - \beta^2 \right\}$$

- $v = \beta c$ the speed of the traversing particle
- Z atomic number of the material
- n the number density
- $I_e \sim 10 {
 m Z~eV}$ effective ionization potential of the material averaged over all atomic e^-

Ionisation in various materials

• The rate of ionisation energy loss does not depend significantly on the material except through its density ρ :


$$n = \frac{\rho}{Am_u}$$

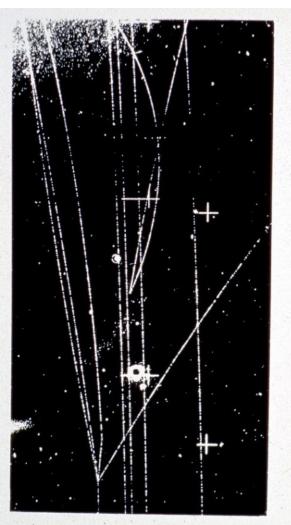
- A atomic mass number
- $m_u = 1.6 \times 10^{-27}$ kg is the unified atomic mass unit

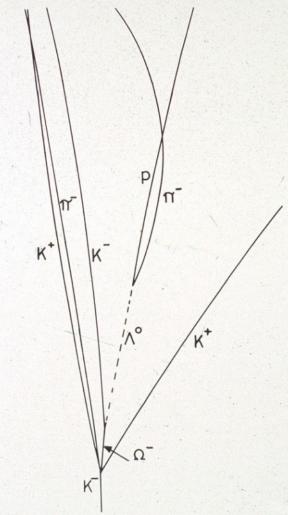
$$\frac{1}{\rho} \frac{dE}{dx} \approx -\frac{4\pi\hbar^2 c^2 \alpha^2}{m_e m_u v^2} \frac{Z}{A} \left\{ \ln \left[\frac{2\beta^2 \gamma^2 c^2 m_e}{I_e} \right] - \beta^2 \right\}$$

•
$$\Longrightarrow \frac{1}{\rho} \frac{dE}{dX} \propto \frac{Z}{A} \approx const$$

Ionisation graph

- In case no other energy losses present for a particle, at MIP level it can travel a long distance
 - e.g. muons in iron lose 13 MeV/cm and have a range of several meters.

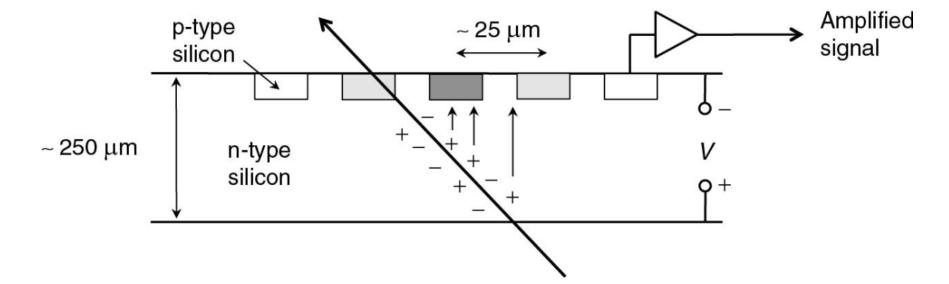

Tracking detectors


 $\begin{array}{c} \text{Bubble chamber:} \\ \Omega \text{ production and decay} \end{array}$

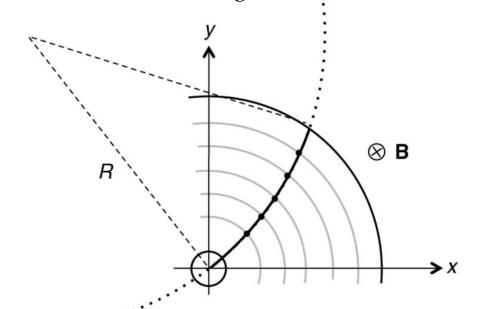
$$K^{-}p \to \Omega^{-}K^{+}K^{+}\pi^{-}$$

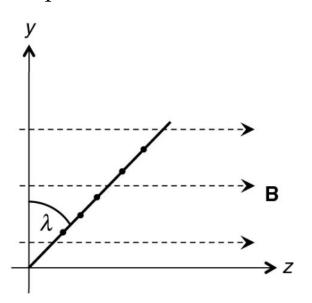
$$\downarrow^{} \Lambda^{0}K^{-}$$

$$\downarrow^{} p\pi^{-}$$

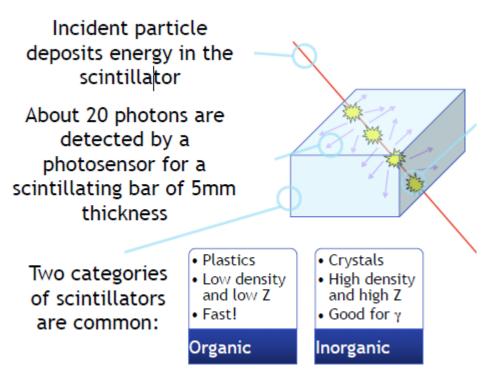


- There are many ways to collect information about the ionisation track
- Charged particles can be visualized
- Cloud chamber (supersaturated water or alcohol vapour; ions lead to condensation)
- Bubble chamber (see left; superheated transparent liquid, e.g. liquid nitrogen)
 - requires taking pictures and subsequent analysis ⇒ very slow
- Nuclear emulsion (photographic plate)
 - used in contemporary low-rate experiments, e.g neutrino interaction detection


Tracking detectors

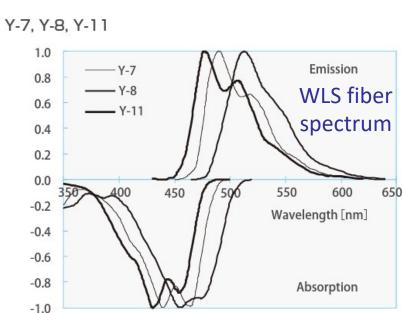

- Most commonly-used technologies for track detection with electronic readout
- Wire chambers filled with gas
 - usually offer large spatial resolution $\mathcal{O}(0.1-1 \text{ mm})$
 - used far from the interaction point, e.g. muon measurement and identification, tracking in fixed target experiments
- Silicon pixels or strips (semiconductors)
 - can provide resolution down to $\mathcal{O}(10\mu\text{m})$
 - typically used near the interaction point to reconstruct many tracks and see displaced vertices

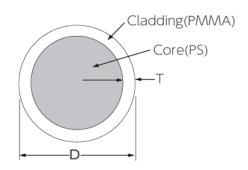
Momentum measurement

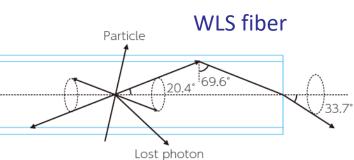

- Complementing a tracking detector with magnetic field can measure p and q
- $\frac{mv^2}{2} = q(\vec{v} \times \vec{B})$ for a perpendicular v component
- $p \cos \lambda = qBR$ (in SI) with pitch angle λ
- $p \cos \lambda [\text{GeV}] = 0.3BR[T\text{m}] \text{ (in HEP)}$
- We can obtain R and $\cos \lambda$ from the reconstructed particle trajectory and knowledge of the B
- Example: 100 GeV π^{\pm} in 4T magnetic field R = 100 m \Rightarrow excellent spatial resolution is needed

Scintillation

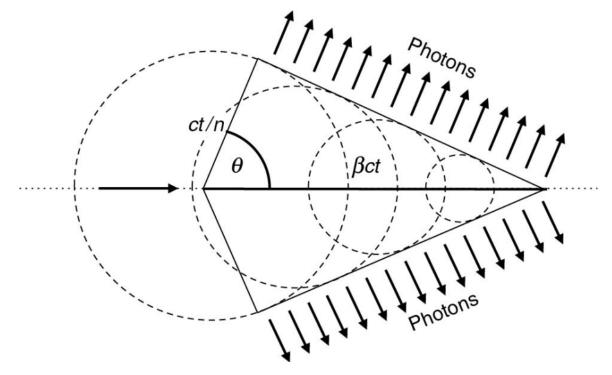

- Scintillator molecules are excited by a traversing charged particle or a photon which leads to emission of photons
- If the medium is transparent to the emitted photons, they can be detected
- Light isolation of the scintillator is important
- The light is guided to photodetectors which convert the photons to electrons, creating electric signal




- Scintillator are used in many applications
 - security and industry: radiation monitoring
 - physics: LHCb tracker (organic scintillator), CMS (inorganic scintillator),
 NA62 hadron calorimeter (organic scintillator)
 - medical: (TOF-) PET scanner


Scintillation detector: example

- Hadron calorimeter of NA62: alternating iron plates and plastic scintillator strips with wavelength-shifting (WLS) fibers glued inside
- Charged particles deposit energy in the strips, leading to photon emission
- The photons are absorbed by the WLS fibers reemitted inside the fiber material and guided to photo-multiplier tubes (PMTs)
- WLS fibers reemit photons in the green part of the spectrum (higher detection efficiency)



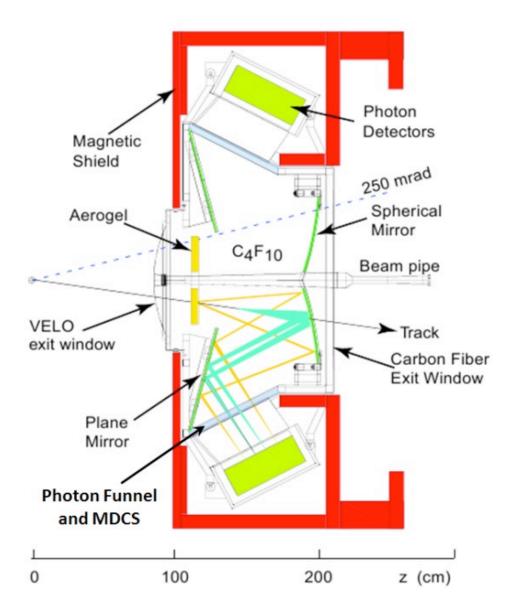
Cherenkov radiation

- Charged particles traversing a dielectric medium with refractive index n polarizes the molecules in the medium
- After the excitation the molecules return to an unpolarized start through the emission of photons
- If the velocity of the particle is greater than the speed of light in that medium v > c/n, constructive interference occurs and radiation is emitted as coherent wavefront at a fixed angle θ along the trajectory of the particle
- The emitted light can be collected by photo-multiplier tubes (PMTs), capable of detecting single photons

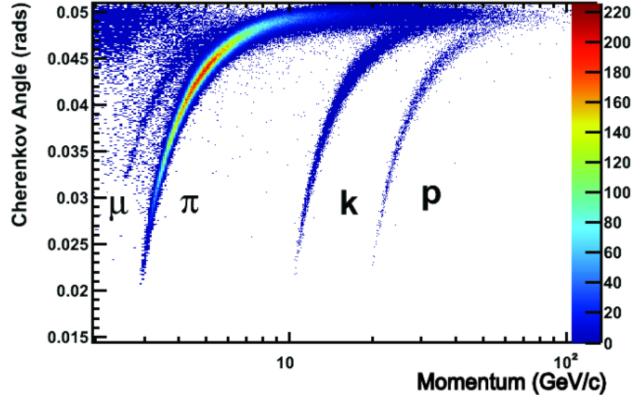
• Light produced at an angle θ

•
$$\cos\theta = \frac{1}{\beta n}$$

• light emission if $\beta > 1/n$

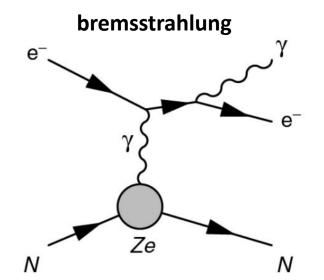

$$\bullet \quad \beta = \frac{p}{E} = \frac{p}{\sqrt{p^2 + m^2}}$$

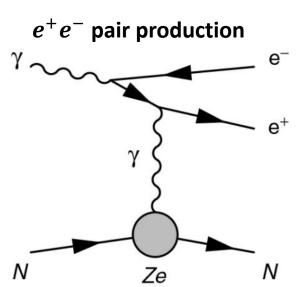
•
$$\Rightarrow m < p\sqrt{n^2 - 1}$$


• For a given *p* helps identifying the passing particles

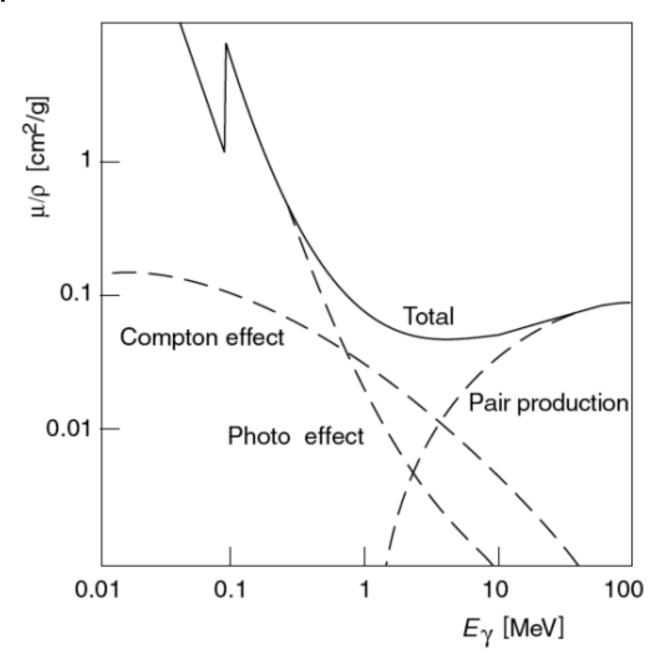
RICH: Ring Imaging CHerenkov system at LHCb

• At LHCb, the RICH system is used to identify different hadrons: π^{\pm} , K^{\pm} p

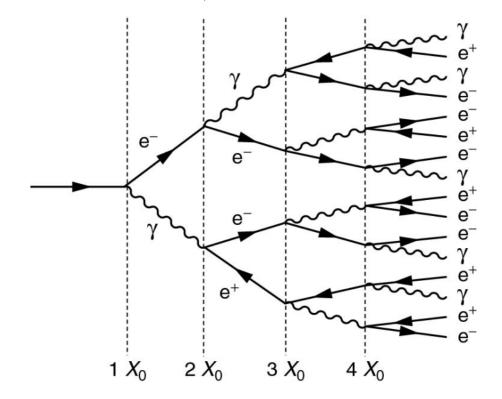

• Reconstructed Cherenkov angle as a function of track momentum in the C_4F_{10} radiator of the RICH detector



• Measure momentum p in the tracker, speed v in the RICH and derive the particle mass and therefore its type

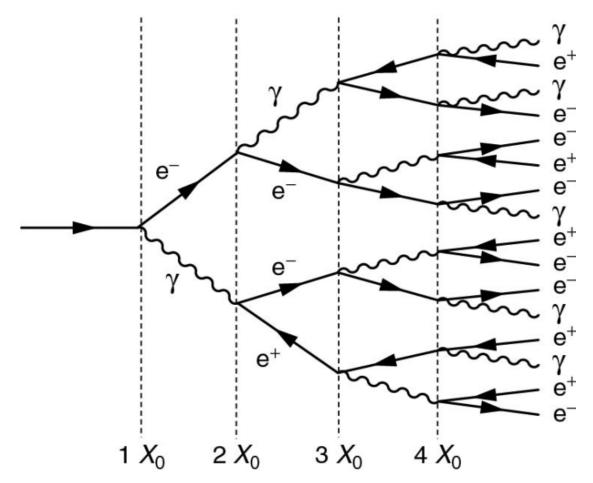

Bremsstrahlung and e^+e^- production

- Bremsstrahlung (breaking radiation) is the main energy loss mechanism for e^{\pm} at energies above the critical energy $E_c \sim 800/Z$ MeV a condition "always" fulfilled in current particle physics experiments
- Bremsstrahlung $\propto 1/m_{particle}^2 \Rightarrow$ not so important for μ^{\pm} , heavier particles for which ionisation losses dominate
- Three main interactions between photons and matter:
 - Photoelectric effect: the photon is absorbed by an atomic electron that is ejected from the atom (valid for $E_{\gamma} < 1$ MeV)
 - Compton scattering: $\gamma e^- \rightarrow \gamma e^-$ important at $E_{\gamma} \sim 1 \text{ MeV}$
 - e^+e^- pair production: dominant energy loss mechanism for photons with $E_{\gamma} > 10$ MeV


Interactions of photons with matter

Radiation length

- Important characteristics of materials: radiation length X_0
- Average distance over which the energy of an electron is reduced by bremsstrahlung by a factor $e(\sim 2.7)$
- $\approx 7/9$ of the mean free path of the e^+e^- pair-production for a photon


$$X_0 \approx \frac{1}{4\alpha n Z^2 r_e^2 \ln(\frac{287}{\sqrt{7}})}, r_e = \frac{e^2}{4\pi\epsilon_0 m_e c^2} = 2.8 \times 10^{-15} \text{ m}$$

- Examples of typical high-*Z* materials :
 - $X_0(\text{Fe}) = 1.76 \text{ cm}$
 - $X_0(Pb) = 0.56 \text{ cm}$
 - \Rightarrow X_0 is rather short

Electromagnetic showers

- Electromagnetic (EM) shower: alternating bremsstrahlung and e^+e^- pair production process
- Number of particles ~ doubles every $X_0 \Longrightarrow \text{ after } nX_0 \text{ the average energy of particles is } \langle E \rangle \sim \frac{E}{2^n}$
- Shower development stops when $\langle E \rangle < E_c$ (shower maximum)

$$x_{\text{max}} = \ln(E/E_c)/\ln 2$$

Example:

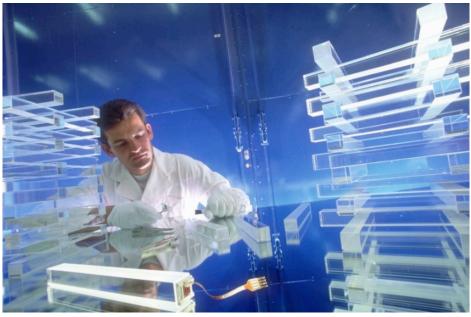
- Shower development in lead:
 - $E_c \sim 10 \text{ MeV}$
 - $X_0(Pb) = 0.56 \text{ cm}$
- A 100 GeV EM shower has a maximum at $x_{\text{max}} \sim 13 X_0$
- $\Rightarrow x_{\text{max}} = 7.28 \text{ cm (compact shower)}$

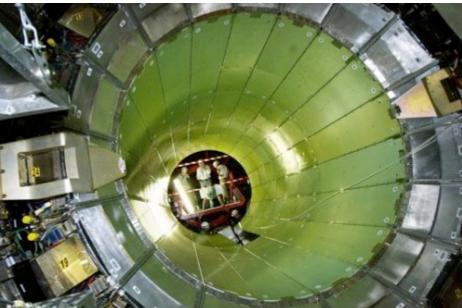
Electromagnetic calorimeters

- Electromagnetic calorimeters is used to measure energy of photons and electrons by fully absorbing them through shower development
- Main parameters are energy and position resolution:

•
$$\frac{\sigma_E}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

• $\sigma_{x,y} = \frac{a}{\sqrt{F}} \oplus \frac{b}{F} \oplus c$ (linear term $\propto 1/E$ usually less relevant for position resolution)


- a: photoelectron statistics (sometimes called *stochastic* term), including effects due to the sampling fraction (how frequently we "sample" the shower profile)
- b: electronics noise
- c: calibration uncertainty and crystal non-uniformity

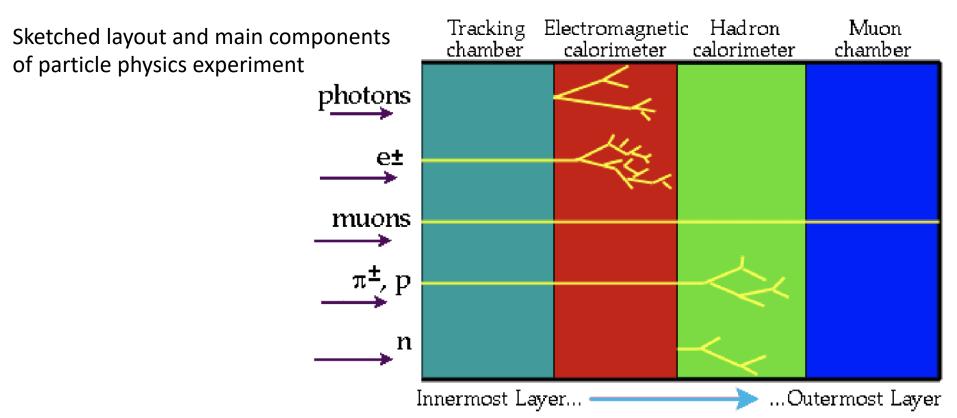

Types of electromagnetic calorimeters

- Homogeneous calorimeters: constructed from a material combining the properties of an absorber and a detector
 - scintillation (scintillating crystals, liquid noble gas)
 - ionisation (liquid noble gas)
 - Cherenkov light (lead glass or heavy transparent crystals)
- Sampling calorimeters: simpler, more economical way to measure γ/e^{\pm} energy if energy resolution is not crucial
 - composed of alternating layers of absorber and sensitive material (e.g. plastic scintillator)

- Best energy resolution at low energies is achieved by *crystal calorimeters*
 - example: CMS ECAL \Rightarrow a = 2.7%, b = 155 MeV, c = 0.55%
- *Sampling calorimeters* have typical values of $a \sim 6 25\%$
 - example: LHCb ECAL \Rightarrow a = 10%, c = 1%

Electromagnetic calorimeter of CMS

- Inorganic scintillation crystals (lead tungstate PbWO₄)
 - each crystal weighs 1.5 kg with a volume of a coffee cup
 - ECAL contains \sim 80 000 such crystals, each of which took two days to grow in the lab
 - it took 10 years to produce mostly in Russia, partially in China


• ETH contribution

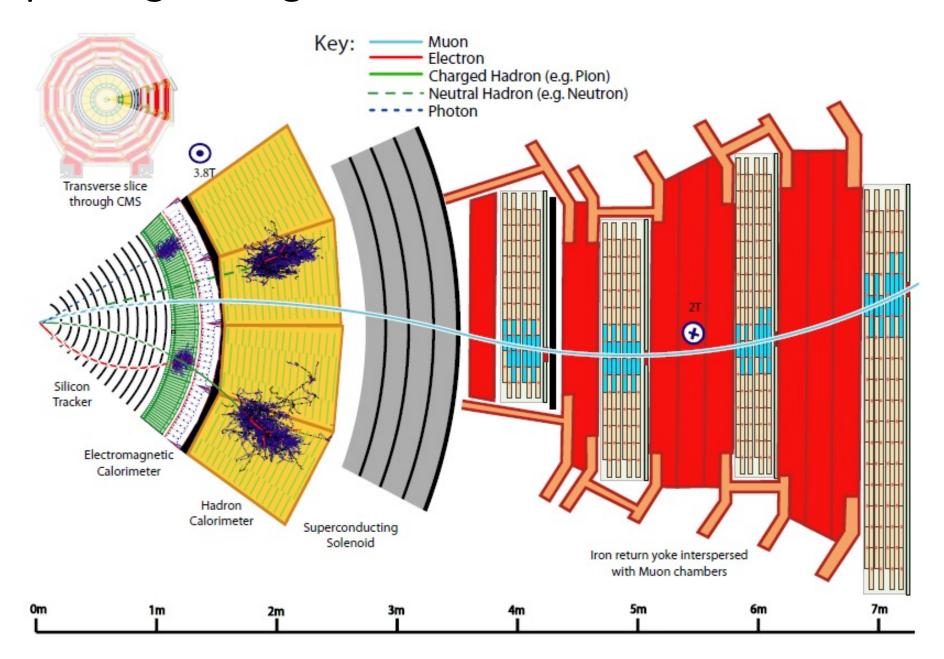
- crystal R&D and procurement
- development and tests of electronics components
- integration of the readout electronics
- detector control system
- signal pulse reconstruction

Hadron calorimeters

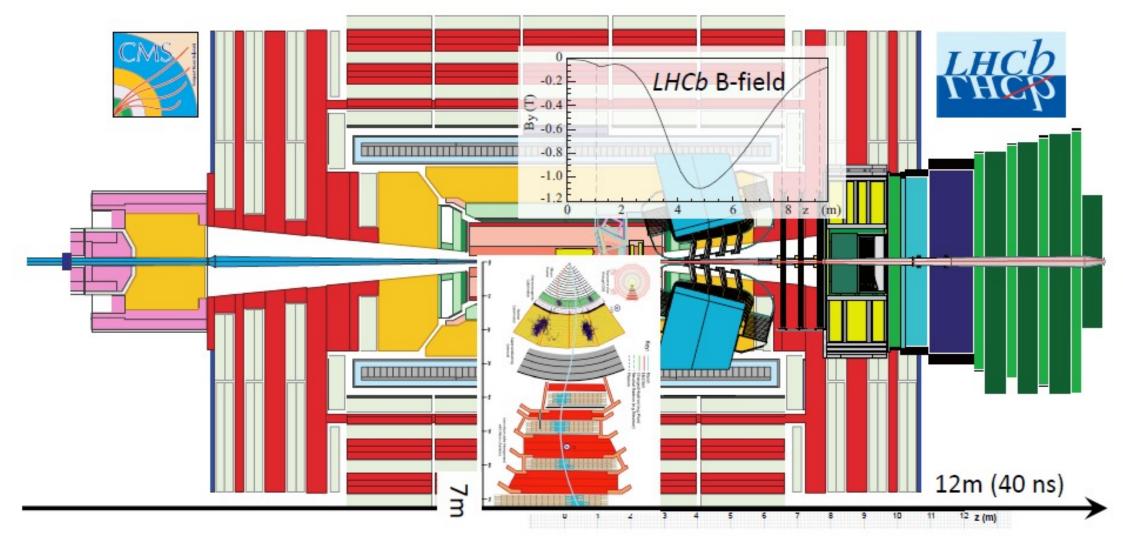
- HCAL works along the same lines as ECAL
- Main difference is in the longitudinal shower development, determined by the average nuclear interaction length $\lambda_I \approx 35 \text{ g/cm}^2 A^{1/3} \gg X_0$
 - scintillation (scintillating crystals, liquid noble gas)
 - ionisation (liquid noble gas)
 - Cherenkov light (lead glass or heavy transparent crystals)
- Typical reaction: p + nucleus $\rightarrow \pi^+ + \pi^- + \pi^0 + ... +$ nucleus*
- Shower from a 100 GeV hadron extends \sim 2 m longitudinally and \sim 0.5 m laterally
- Typically a sampling technology is used
- Fluctuations in the EM fraction of the shower (from $\pi^0 s$) and the amount of energy lost in nuclear break-up lead to a typical $\sigma_E/E \sim 50\%/\sqrt{E/\text{GeV}}$ (order of magnitude worse than for EM showers)

Summary of particle detection

- Tracking detectors measure the momentum of charged particles and their charge
- Calorimeters measure the energy of the particles
- Cherenkov detectors allow to determine the speed/mass of the particle
- Relative position of various type of detectors is optimised to collect and correlate all possible information 22

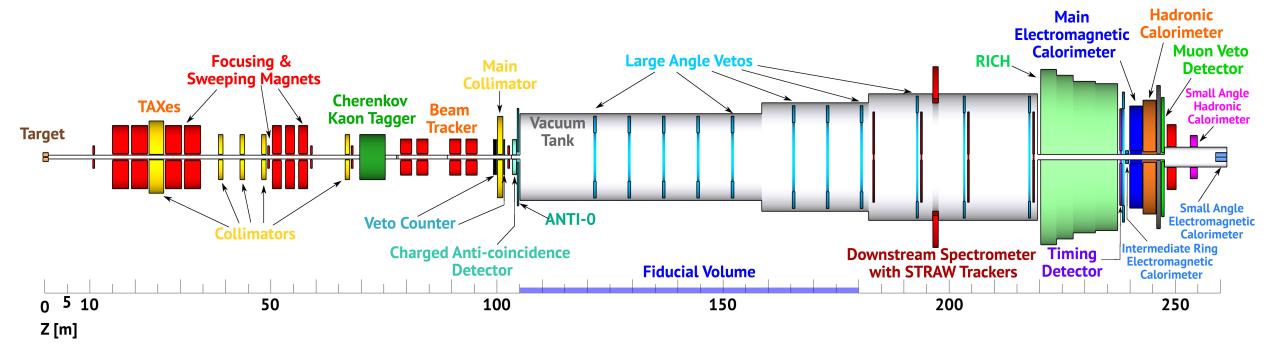

More information about particle detectors

- A detailed detector review in a book by Claus Gruppen and Irene Buvat:
 - "Handbook of Particle Detection and Imaging" (2012)
 - Available from the publisher for free download
 - https://link.springer.com/referencework/10.1007/978-3-642-13271-1


- A dedicated one-semester course given in the fall semester (now) by Guido Haefeli:
 - PHYS-440 Particle Detection
 - https://edu.epfl.ch/coursebook/en/particle-detection-PHYS-440
 - everybody with interest in experimental particle physics is strongly encouraged to follow it!

Let's have a look at a few modern particle physics experiments at CERN!

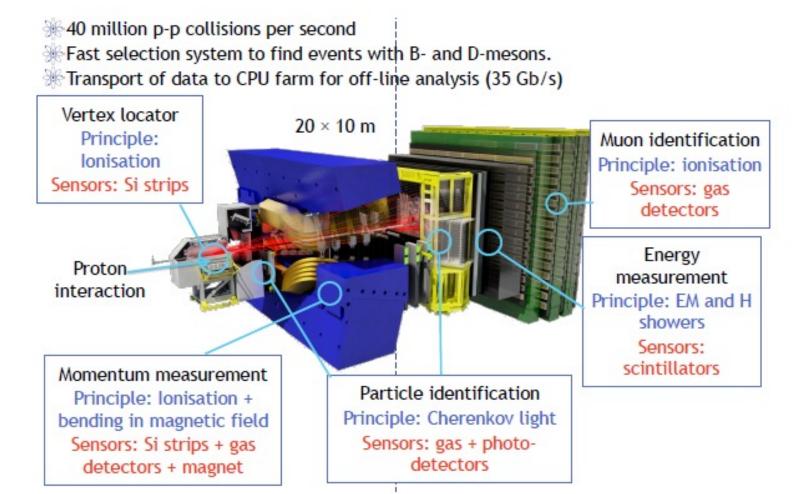
Particles passing through detector: CMS



Detectors visualized

- ATLAS and CMS have 4π geometry and record almost the full information from the collision
- LHCb is instrumented in the forward direction and provides complementary coverage

Detectors visualized



- Beam of 400 GeV protons hits the primary target
- Secondary unseparated beam of 75 GeV is created (mainly p, π^+ , K^+) and guided to the fiducial decay volume
- Significantly boosted *K* meson ($\gamma \sim 150$) decays in flight in the fiducial decay volume $\sim 100-170$ m from the target
- 4π coverage corresponds to ~ 50×10^{-3} rad because of the high boost of the *K* meson particle

LHCb subdetectors

- LHCb searches for the charge-parity (CP) violation in the decays of *B* and *D* mesons (containing *b* and *c* quarks) produced in *pp* collisions at the LHC
- Sizable CP violation can explain the observed asymmetry between matter and antimatter in the Universe

LHCb detector in Run 1 and 2 (2011-2018)

Summary of Lecture 3

Main learning outcomes

- What are the main physics principles used in particle detection
- How to employ different detection methods to measure the characteristics of charged and neutral particles
- Examples of modern particle physics experiments which combine detection methods to study fundamental physics phenomena